Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor
نویسندگان
چکیده
Engineered nanomaterial (ENM)-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs) are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1) in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC) isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line). Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.
منابع مشابه
Enhanced mast cell activation in mice deficient in the A2b adenosine receptor
Antigen-mediated cross-linking of IgE bound to mast cells via the high affinity receptor for IgE triggers a signaling cascade that results in the release of intracellular calcium stores, followed by an influx of extracellular calcium. The collective increase in intracellular calcium is critical to the release of the granular contents of the mast cell, which include the mediators of acute anaphy...
متن کاملLeukocyte common antigen (CD45) is required for immunoglobulin E- mediated degranulation of mast cells
We demonstrate using primary mast cell cultures derived from wild-type and CD45-deficient mice that mast cell triggering through the high-affinity immunoglobulin E (IgE) receptor requires the cell surface tyrosine phosphatase CD45. Unlike wild-type cells, cross-linking of surface-bound IgE in mast cells deficient in CD45 does not induce degranulation. Degranulation in these mutant cells does oc...
متن کاملRictor negatively regulates high-affinity receptors for IgE-induced mast cell degranulation.
Rictor is a regulatory component of the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). We have previously demonstrated that rictor expression is substantially downregulated in terminally differentiated mast cells as compared with their immature or transformed counterparts. However, it is not known whether rictor and mTORC2 regulate mast cell activation. In this article, we show that m...
متن کاملIgE alone-induced actin assembly modifies calcium signaling and degranulation in RBL-2H3 mast cells.
In the mast cell signaling pathways, the binding of immunoglobulin E (IgE) to FcepsilonRI, its high-affinity receptor, is generally thought to be a passive step. In this study, we examined the effect of IgE alone, that is, without antigen stimulation, on the degranulation in mast cells. Monomeric IgE (500-5,000 ng/ml) alone increased cytosolic Ca2+ level ([Ca2+]i) and induced degranulation in r...
متن کاملRole of the FceRI b-chain ITAM as a signal regulator for mast cell activation with monomeric IgE
The b-chain of the high-affinity receptor for IgE (FceRI) plays a crucial role for amplification of the intracellular signaling in mast cells upon FceRI cross-linking by IgE antigen complexes (IgE Ag). Some monomeric IgE as well as IgE Ag stimulate FceRI-signaling pathways, leading to cell activation, whereas the biological functions of the b-chain in the monomeric IgE-mediated mast cell signal...
متن کامل